Restricted Boltzmann Machines as Models of Interacting Variables

نویسندگان

چکیده

Abstract We study the type of distributions that restricted Boltzmann machines (RBMs) with different activation functions can express by investigating effect function hidden nodes on marginal distribution they impose observed binary nodes. report an exact expression for these marginals in form a model interacting variables explicit interactions depending node function. properties detail and evaluate how accuracy which RBM approximates over depends number When inferred parameters are weak, intuitive pattern is found interaction terms, reduces substantially differences across functions. show weak parameter approximation good RBMs trained MNIST data set. Interestingly, cases, mapping reveals models essentially low order models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete restricted Boltzmann machines

We describe discrete restricted Boltzmann machines: probabilistic graphical models with bipartite interactions between visible and hidden discrete variables. Examples are binary restricted Boltzmann machines and discrete näıve Bayes models. We detail the inference functions and distributed representations arising in these models in terms of configurations of projected products of simplices and ...

متن کامل

Supervised Restricted Boltzmann Machines

We propose in this paper the supervised restricted Boltzmann machine (sRBM), a unified framework which combines the versatility of RBM to simultaneously learn the data representation and to perform supervised learning (i.e., a nonlinear classifier or a nonlinear regressor). Unlike the current state-of-the-art classification formulation proposed for RBM in (Larochelle et al., 2012), our model is...

متن کامل

Cardinality Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is a popular density model that is also good for extracting features. A main source of tractability in RBM models is that, given an input, the posterior distribution over hidden variables is factorizable and can be easily computed and sampled from. Sparsity and competition in the hidden representation is beneficial, and while an RBM with competition among ...

متن کامل

Tensor-Variate Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are an important class of latent variable models for representing vector data. An under-explored area is multimode data, where each data point is a matrix or a tensor. Standard RBMs applying to such data would require vectorizing matrices and tensors, thus resulting in unnecessarily high dimensionality and at the same time, destroying the inherent higher-ord...

متن کامل

Sparse Group Restricted Boltzmann Machines

Since learning in Boltzmann machines is typically quite slow, there is a need to restrict connections within hidden layers. However, the resulting states of hidden units exhibit statistical dependencies. Based on this observation, we propose using l1/l2 regularization upon the activation probabilities of hidden units in restricted Boltzmann machines to capture the local dependencies among hidde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computation

سال: 2021

ISSN: ['0899-7667', '1530-888X']

DOI: https://doi.org/10.1162/neco_a_01420